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Affordable genome sequencing technologies promise to revolutionize the field of human genetics
by enabling comprehensive studies that interrogate all classes of genome variation, genome-wide,
across the entire allele frequency spectrum. Ongoing projects worldwide are sequencing many
thousands—and soon millions—of human genomes as part of various gene mapping studies,
biobanking efforts, and clinical programs. However, while genome sequencing data production
has become routine, genome analysis and interpretation remain challenging endeavors with
many limitations and caveats. Here, we review the current state of technologies for genetic variant
discovery, genotyping, and functional interpretation and discuss the prospects for future advances.
We focus on germline variants discovered by whole-genome sequencing, genome-wide functional
genomic approaches for predicting and measuring variant functional effects, and implications for
studies of common and rare human disease.
Introduction
The development of high-throughput sequencing technologies

has revolutionized human genetics and genomics. For the first

time, widespread use of whole-genome sequencing (WGS)

allows detection of a full range of common and rare genetic var-

iants of different types across almost the entire genome, which

facilitates rare disease research and clinical applications, and

can improve common disease discovery and annotation of the

causal variants. Now that hundreds of thousands of genomes

have been sequenced worldwide, we are at the start of a new

era where WGS will be a predominant technology for genetic

analysis. This is a fundamental change compared to previous

decades of human genetic studies that have relied on genetic

markers that are indirect proxies of other genetic variants in

the surrounding region or sequencing data only from the exonic

regions of the genome.

Functional interpretation of variants discovered by WGS is an

important component of human genetics studies and is essential

for revealing the effects of variants on traits. Genome-wide func-

tional genomics assays now allow for increasingly accurate

detection, characterization, and prediction of the molecular ef-

fects of variants. However, since these effects reflect the full

complexity of genome function, our understanding of which is

incomplete, much remains to be discovered regarding variant

molecular effects and their potential for impacting higher-level

organismal phenotypes.

In this Review, we discuss approaches, advances, and future

prospects for genetic variant discovery, genotyping, and func-

tional interpretation. We focus on germline variants discovered
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by WGS and genome-wide functional genomic approaches for

analysis of functional effects of these variants. These are founda-

tional building blocks for the discovery and interpretation of ge-

netic effects on rare and common human diseases and traits

(Figure 1).

Human Genome Sequencing
WGS Technologies

The first aim of a typical WGS study is to create a high-quality

map of genome variation for the samples of interest. This crucial

step lays the foundation for all downstream analyses aimed at

genome interpretation and genetic discovery because variants

that are not accurately discovered and genotyped will not be

directly assessed in trait-focused analyses. The methods used

to map genome variation depend heavily on the sequencing

technology and depth of coverage obtained.

There are currently three general WGS strategies (Figure 2):

(1) short-read WGS using the Illumina technology, which

currently yields paired-end �150 bp reads with low error rates

in the range of �0.1%–0.5%; (2) long-read WGS using single-

molecule technologies from Pacific Biosciences (PacBio) or

Oxford Nanopore Technologies (ONT), which yield 10–100

kb reads—and occasionally much longer—with high error

rates in the range of �10%–15%; and (3) linked-read WGS us-

ing the technology from 10X Genomics, which generates

barcoded Illumina short-reads from longer molecules (e.g.,

�50 kb). Due to considerations of cost, ease of use, and accu-

racy, the overwhelming majority of human genetics studies

employ short-read WGS using the Illumina HiSeq or NovaSeq
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Figure 1. The General Framework of

Genome Analysis in Studies of Human

Phenotypes
Areas discussed in this Review highlighted in blue.
platform, and we therefore focus primarily on analysis of this

data type.

An important consideration in the design ofWGS studies is the

desired level of coverage. To distinguish variants from errors,

each base in the genome must be sequenced multiple times

from randomly sampled DNA molecules. Deeper coverage im-

proves variant detection sensitivity and also improves accuracy

by allowing for more sophisticated filtering schemes. In general,

family-based or n = 1 rare disease studies target deeper

coverage (>30x) to ensure robust detection of rare or de novo

heterozygous variants. Larger-scale complex trait studies may

target somewhat lower coverage (e.g., >20x) to increase sample

size for a given budget, while still allowing for sensitive rare

variant detection. Early groundbreaking studies (e.g., Auton

et al., 2015) employed low-coverage (<10x) WGS to reduce

sequencing costs, but this approach fails to detect many rare

variants and is no longer common. However, for complex trait

mapping studies focused primarily on common variants, a

powerful strategy is to maximize sample size by pursuing ultra-

low-coverage (<1x) sequencing combined with variant imputa-

tion to infer missing genotypes (Pasaniuc et al., 2012). Although

the optimal coverage model depends on the goals of the study,

in practice, most current WGS studies are employing deep

WGS (>20x).

Alignment and Data Processing

Since high-quality de novo assembly is not possible from short

reads, standard WGS analysis pipelines align reads to the refer-

ence genome and map variants relative to the reference

(Figure 2). Most modern pipelines use BWA-MEM (Li, 2013) for

alignment and a combination of tools for subsequent process-

ing. Although these methods are now well established, there

are still several areas of innovation. Performance improvements

and reductions in the alignment file size (Hsi-Yang Fritz et al.,

2011; Regier et al., 2018) are important from the standpoint of ef-

ficiency and cost, especially in population-scale WGS studies
involving thousands to millions of ge-

nomes. Additionally, differences in tools,

parameters, or reference genome ver-

sions between different datasets affect

variant calls and genotypes and intro-

duce batch effects in downstream ana-

lyses. This issue is especially trouble-

some for large-scale trait association

studies where subtle genotyping biases

can grossly inflate false positives and

where reprocessing of large datasets to

achieve harmonization would require

much time and expense. Data compati-

bility is also extremely important for

small-scale studies that aim to accurately

compare variant calls with public data-
bases such as gnomAD (Karczewski et al., 2019). A recent

multi-center effort established a model for implementing ‘‘func-

tionally equivalent’’ pipelines, which are now in use at many

genome centers worldwide, that alleviate batch effects and

enable data sharing (Regier et al., 2018).

Genetic Variant Classes
Single-Nucleotide Variants and Small Insertion/Deletion

Variants

Single-nucleotide variants (SNVs) and small insertion/deletion

variants (indels) (<50 bp) comprise the vast majority of variants

in the human population (Table 1). There are �3–4 million

SNVs and �0.4–0.5 million indels apparent in a typical compar-

ison of one human versus the reference, and the dbSNP catalog

(build 151) has over 660 million SNVs and indels from diverse

sequencing studies. While the vast majority of this huge number

of variants have no functional impact at the molecular or pheno-

typic level, every genome has >100 protein truncating variants

(PTVs) that introduce a premature stop codon, >20 of which

are rare in the human population and potentially deleterious

(Lek et al., 2016). Nonsynonymous ormissense SNVs or in-frame

indels lead to amino acid changes, which can be entirely benign

or cause a severe disease. Finally, these variants can affect gene

regulation by affecting transcriptional and posttranscriptional

regulatory elements. Fundamentally, for an SNP or small indel

to have an effect on gene regulation, a sequence-specific regu-

lator whose activity is differentially affected by the two alleles is

needed—at least at some point during development. These

include (for example) transcription and splicing factors that

bind to specific DNA motifs, as well as noncoding regulatory

RNAs such as miRNAs.

These small variants are the easiest class of variants to detect

from short-read data. In general, SNV/indel detection algorithms

scan the reference genome in search of collections of aligned

reads that exhibit mismatches, insertions, or deletions in a
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Figure 2. Overview of Genome Sequencing and Variant Detection

Approaches
The experimentally sequenced ‘‘test’’ genome contains two heterozygous
SNVs, each located on a different chromosome (blue and red stars), one ho-
mozygous SNV (green stars), and a heterozygous deletion (dashed line).
Reference alleles are represented by solid lines and black stars. The pan-
genome graph representation at right requires prior knowledge of all shown
variants.
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manner that suggests germline variation rather than sequencing

or alignment error. Existing widely used tools (e.g., DePristo

et al., 2011; Garrison and Marth, 2012) are highly effective in

the �72% of the genome that is unique and allows for accurate

read alignment, with levels of sensitivity and specificity that

exceed 99.5% for SNVs and 95% for indels (Regier et al.,

2018; Zook et al., 2014). However, there is much room for

improvement at larger and repeat-containing indels that

confound read alignment. Some tools combine reference-based

variant detection with local haplotype assembly to improve indel

calling and phase nearby variants (DePristo et al., 2011; Garrison

and Marth, 2012). About 8.5% of the genome is considered

extremely difficult for SNV/indel calling due to the presence of

segmental duplications and/or high-copy repeats that cause

short-read misalignment (Regier et al., 2018). These regions

include some clinically relevant multi-copy genes, and the poor

detection of variants in these genes is a key weakness of

short-read WGS. This is difficult to overcome algorithmically

but will improve substantially as read lengths increase, allowing

for more accurate alignment to the reference.

Structural Variation

Structural variation (SV) is a diverse form of genome variation

R50 bp in size that includes copy number variants (CNVs), rear-

rangements, and mobile element insertions (MEIs). SVs are few

in number compared to SNVs and indels (Table 1) but have

more severe consequences on average due to their size. SVs

can exert functional effects by changing gene dosage, disrupting

gene function (similar to PTVs), or rearranging regulatory ele-

ments and/or genes to alter genomic context. Unsurprisingly,

extremely large variants that delete or duplicate many genes or

even entire chromosomes typically have drastic phenotypic ef-

fects and are not observed in most individuals. Smaller and

more prevalent forms of SV typically affect only one or a few

genes or lie within noncoding regions. Although SVs account

for merely �0.2% of total variants, recent WGS-based studies

have estimated that they account for 3%–7% of common vari-

ants with cis-acting effects on gene expression, a much larger

fraction of rare expression-altering variants, and 4%–12% of

high-impact coding alleles (Abel et al., 2018; Chiang et al., 2017).

SV is recognized to be the most difficult form of variation to

detect reliably from short-read data. Different variant classes

require distinct algorithmic approaches (reviewed in (Alkan

et al., 2011)), and SVs are enriched in repetitive elements that

confound short-read mapping. A typical human genome has

�10,000 SVs that are detectable from short-read WGS data (Ta-

ble 1), and >20,000 are detectable by long-read WGS (Audano

et al., 2019; Chaisson et al., 2018), where the difference is pri-

marily due to small and repetitive variants. There is a plethora

of SV mapping tools but only a few general approaches. Overall,

the most accurate and high-resolution approach is ‘‘breakpoint

mapping.’’ This method relies on direct detection of novel

sequence junctions that are not present in the reference genome

using a combination of read-pair alignments, split-read align-

ments, and/or local assembly. Popular tools combine multiple

signals across populations of samples (e.g., Chen et al., 2016;

Handsaker et al., 2011; Layer et al., 2014; Rausch et al., 2012).

In theory, this approach can detect any SV whose breakpoints

are relatively unique, which includes �75% of the SVs



Table 1. The Landscape of Human Genome Variation

Variant Class Subclass, Other Term(s) Size

Num. / genome

(Illumina WGS) Arrays

Short-Read

WGS

Long-Read

WGS

Single Nucleotide Variation (SNV) point mutation; substitution 1 bp 3.5 3 106 XX XXX XX

Small Insertion/Deletion Variation (indel) insertion; deletion; complex indel 1-49 bp 4.5 3 105 XX XX X

Structural Variation (SV) copy number

variation (CNV)

deletion R50 bp 5,000 X XX XXX

duplication (tandem, interspersed) 1,000 X XX XXX

multi-allelic CNV; tandem repeats 450 X XX XX

insertion novel, templated or repeat insertion 1,500 - X XXX

balanced

rearrangement

inversion 40 - XX XXX

reciprocal translocation inter-chrom 0.001 - XX XXX

complex genomic

rearrangement

complex SV; chromothripsis >1 mb 0.01 - XX XXX

extremely large copy

number variant

aneuploidy; chrom. abnormality >1 mb 0.01 XXX XXX XXX

retrogene insertion retroduplication; retrocopy gene coding length 10 - XX XXX

mobile element

insertion (MEI)

SINE; LINE; SVA 0.3-7 kb 2,000 - X XXX

Tandem Repeat Variation short tandem

repeat (STR)

microsatellite; simple sequence

repeat

1-6 bp (repeat unit) 1 3 105 - X XXX

variable number

tandem repeat (VNTR)

minisatellite 7-49 bp (repeat unit) unknown - X XX

centromeric &

heterochromatic repeats

satellite DNA (a, b, 1-3) various unknown - - XX

Themajor variant classes are shown at left, with subclasses and other terms shown in adjacent columns. Note that the precise terms and size definitions used for different variant classes varies in

the literature, especially for the tandem repeat classes shown at bottom –we used common yet non-overlapping definitions. Shown at right is the relative utility of microarray, short-readWGS and

long-readWGS technologies for detecting each class of variation, on a scale of 0-3, where ‘‘–‘‘ indicates a near-complete inability to detect that variant class, and 3 indicates that the technology is

highly effective. Note that microarray technologies are generally only able to detect SNVs and indels known from prior sequencing studies. For each variant class we include a rough estimate of

the number of variants detectable per human genome using Illumina short-readWGS. Note that these numbers will vary based on ancestry andmethods. In particular, the numbers shown for SVs

and STRs are highly approximate and depend heavily on the tools, sequencing depth and filteringmethods employed. To derive the numbers for various SV classes, we assumed that 10,000 total

SVs were detectable by Illumina WGS, and derived the relative contribution of each variant class based on the combined knowledge from studies cited in this review, as well as our own unpub-

lished observations.
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detectable by Illumina WGS. A key strength of this approach

is that SV breakpoints are mapped to high resolution—

usually <100 bp and often to a single base—which greatly facil-

itates downstream functional interpretation.

However, some SV breakpoints cannot be captured directly

from short-read alignments because they are embedded within

(or composed of) repeats that confound read mapping. Notable

examples are recurrent CNVs formed by non-allelic homologous

recombination that underlie many human disorders. However,

larger such CNVs (>1 kb) can be detected by read-depth anal-

ysis. This method yields similar information as array-based

approaches and has similar challenges, including poor sensi-

tivity and high false discovery rate (FDR) at smaller CNVs

(<10 kb), low-resolution breakpoint prediction, and artifactual

fragmentation of large CNVs into many smaller CNV calls, which

complicates functional interpretation. Only a modest number

(5%–10%) of CNVs are detectable solely by read-depth analysis.

However, these also tend to be among the largest CNVs, are

enriched in genes, and are often not well tagged by SNVs.

Read-depth analysis is therefore crucial for human genetics

studies that aim to be comprehensive (Handsaker et al., 2015;

Sudmant et al., 2015a).

Given the diverse and complementary approaches, it is not

surprising that many studies employ compendium strategies

that combine the results of multiple tools (e.g., as in Mills et al.,

2011). Multi-algorithm approaches inevitably outperform single

tools in terms of sensitivity, but weaknesses include increased

FDR, increased compute time and cost, and the complexity of

merging and adjudicating conflicting variant calls to create a

consensus set. Thus, although compendium approaches are

clearly superior, there are significant practical obstacles to their

efficient and effective use in human genetics studies.

The architectural diversity of SV also poses challenges. For

example,�5%of SVs are ‘‘complex’’ variants with multiple adja-

cent or intertwined breakpoints, the structure and consequences

of which are often difficult to infer (reviewed in Quinlan and Hall,

2012). Most complex germline SVs are small, but extreme forms

can involve multiple chromosomes or distant loci. Other non-

canonical SV classes requiring specialized methods include

‘‘retrogene insertions’’ derived from the action of retroelement

machinery on processed transcripts, leading to insertion of

coding sequences lacking introns (Sudmant et al., 2015b), and

insertions of novel sequence not found in the reference genome

(Kidd et al., 2008; Sherman et al., 2019).

Repetitive Variant Classes

The detection of variants involving high-copy repeats is difficult

due to challenges in accurate alignment and requires even

more specialized approaches than SVs in general. Mobile

element insertions (MEIs) caused by retrotransposition are a

relatively common form of variation, with >2,000 detectable

MEIs in a typical genome (Sudmant et al., 2015b). Although

MEIs do not generally appear to be a major source of causal

disease variants, there are notable examples (reviewed in

Kazazian and Moran, 2017), and MEIs have the potential to

disrupt genes and regulatory elements at insertion sites and

can serve as alternative promoters. Current MEI detection

algorithms extract candidate MEI-containing reads based on

reference genome alignments and then re-align them to a
74 Cell 177, March 21, 2019
library of consensus mobile element sequences to obtain

higher quality evidence.

Short tandem repeats (STRs, also known as microsatellites)

are typically defined as repetitive arrays with repeat unit of

1–6 bp. STRs are extremely abundant (Willems et al., 2014)

and highly polymorphic due to a high mutation rate. Coding

STRs have been linked to >40 monogenic disorders typically

due to amino acid repeat expansions (Mirkin, 2007), and non-

coding STRs have been reported to account for 10%–15% of

common variant cis heritability of gene expression (Gymrek

et al., 2016). Various tools have been developed to detect

STRs from short-read data, traditionally for shorter STRs (Gym-

rek et al., 2012) but recently also for longer STRs that include

most pathogenic loci (Dashnow et al., 2018; Dolzhenko et al.,

2017; Mousavi et al., 2018).

Variable number tandem repeats (VNTRs, also known as min-

isatellites) are repetitive arrays with repeat unit 7–49 bp. Most

VNTRs are noncoding with some having strong regulatory

effects on neighboring genes (Pugliese et al., 1997), and a few

coding VNTRs are known to cause Mendelian diseases (Kirby

et al., 2013). Despite noteworthy examples, VNTR detection

has received scant attention, and few specialized algorithms

exist (Bakhtiari et al., 2018). Larger satellite repeat arrays at

centromeres and heterochromatic regions are even less well

studied. For this reason, the prevalence and functional impor-

tance of VNTRs and satellite repeat variation remain unclear.

It is worth noting that the distinction between repetitive variant

classes are often arbitrary, and definitions are not consistently

applied in the literature nor in variant catalogs. We expect this

to be clarified as sequencing and variant calling methods

improve.

Joint Variant Detection and Genotyping in Population
Studies
The above discussion has largely focused on the task of discov-

ering genetic variants on a per-sample basis. However, this is not

sufficient for studies that involve multiple individuals in a family,

cohort, biobank, or case-control design. The desired output of

variant calling is a ‘‘squared-off’’ file (typically in VCF format)

that describes all the variants discovered in the study, with an ac-

curate genotype for all individuals at all variable sites. To achieve

this, we cannot simply paste together the results of per-sample

variant calling. There is a consensus in the field that joint variant

calling methods that co-analyze raw WGS data across the full

collection of sites, and individuals in a single probabilistic model

yields higher quality variant sites and genotypes. Systematic

quality control (QC) of the resulting VCF can improve genotyping

accuracy at common variants, reduce FDR at rare variants, and

alleviate batch effects among data from different centers, instru-

ments, and sample collection sites. For these reasons, virtually

all current human genetics studies employ joint variant calling.

However, joint variant calling poses significant technical chal-

lenges for large-scale studies. Current approaches employ com-

plex workflows involving (1) parallelized per-sample calling, (2)

merging of variant calls across samples, (3) re-assessment of

raw (or nearly raw) data to produce maximally sensitive geno-

types for all sites in all samples, and finally, (4) filtering, tuning,

and QC on the entire dataset. Even the most efficient of current



pipelines do not easily scale to >10,000 samples. Technical chal-

lenges are especially pronounced for SVs and other recalcitrant

variant types, where cross-sample merging is more difficult (due

to spatial imprecision) and where WGS-based genotyping

methods are far less accurate, scalable, and affordable. Thus,

although several prior large-scale studies have managed to

create high-quality maps of diverse variant types (as noted in

prior sections), these have been heroic efforts that required

customized algorithms and clever ad hoc methods. Creating

comprehensive and accurate variant maps for large-scale

WGS studies remains a complex, laborious, and expensive pro-

cess that is accessible to few groups, and significant advances

will be required before it is routine. In particular, this remains a

key barrier for efforts to understand the contribution of SVs

and repetitive variant classes to complex traits.

It is important to recognize that the value of population-scale

joint variant calling extends beyond the immediate benefits for trait

mapping studies because harmonized variant callsets are the ba-

sis for databases such as gnomAD (Karczewski et al., 2019) that

enable community-wide variant interpretation efforts and are likely

to be the foundational resource for next-generation data sharing

platforms implemented at public and private data repositories.

Future Improvements in Algorithms and Data for
Genome Analysis
Pan-genome References and Analysis Tools

A limitation of the current WGS analysis paradigm is the core reli-

ance on the reference genome. Although the GRCh38 reference

is extremely high quality in most respects, it still has gaps and er-

rors at repetitive and structurally diverse regions. An even bigger

problem for genetic studies is that the reference human genome

is inherently not able to represent the diversity our species’ col-

lective ‘‘human genome,’’ i.e., 12 billion haploid genomes in the

entire population. The reference is a mosaic haploid representa-

tion of multiple individuals, such that a collection of haplotypes

has been ‘‘smashed’’ together in an unpredictable manner.

There have been laudable efforts to append ‘‘alternative loci’’

to GRCh38 in highly diverse regions (e.g., MHC, KIR, CYP2D6)

(Church et al., 2015). However, the impact of this effort has

been modest because the alternate loci in GRCh38 are fairly

limited in number and scope, and most tools and pipelines do

not make use of them.

One unfortunate consequence of the mosaic haploid refer-

ence is that reference-based variant calling methods are slightly

more accurate for individuals whose ‘‘local ancestry’’ at a given

locus is more closely related to that of the reference genome. A

second consequence is that poor alignment severely affects

detection of many relevant alleles in regions of high genomic di-

versity; prominent and clinically important examples are the

MHC locus, KIR genes, CYP2D6, olfactory gene clusters, and

the ancient inversion at 17q21.31 (Stefansson et al., 2005).

Finally, it is impossible to find variants in ‘‘novel sequences’’

that are simply not present in the reference genome (Kidd

et al., 2008; Sherman et al., 2019). Although most such regions

are small, non-genic, and/or highly repetitive, it would nonethe-

less be preferable to assess them in WGS studies.

Due to these limitations, momentum has built around the idea

of creating a next-generation reference ‘‘pan-genome’’ resource
that represents all relatively commonDNA sequences and alleles

in the human population. Within a few years, we expect high-

quality haplotype-resolved diploid assemblies to be available

for at least 500 ancestrally diverse humans. This resource will

also provide a set of highly accurate genomes that can be

used as a benchmarking dataset to improve short-read analysis

tools. Even more importantly, these genomes allow completely

new designs for more effective short-read analysis strategies

that overcome many of the limitations described above.

Transitioning to a pan-genome reference will require develop-

ment of new algorithms and pipelines for analyzing short-read

WGS data. Pan-genome tools typically employ a graph-based

data structure, referred to as ‘‘genome graphs’’ or ‘‘variant

graphs,’’ to represent allelic diversity (Figure 2) (Paten et al.,

2017). This is a major change relative to traditional tools. There

has been substantial progress in this area during recent years,

and new tools have been developed to allow for efficient genome

graph representation, short-read alignment, and variant geno-

typing at specific loci such as HLA (Dilthey et al., 2015) and

CYP2D6 (Numanagi�c et al., 2015), and more recently genome-

wide (Garrison et al., 2018). Remaining challenges include

encoding of linkage disequilibrium (LD) information, repetitive

elements and complex variants, and providing user-friendly

visualization tools. Although much more work is needed before

graph-based WGS analysis pipelines are used routinely for hu-

man genetics research—let alone clinical applications—these

methods have taken an important first step.

Affordable and High-Quality Long-Read WGS

Most of the technical difficulties discussed in the above sections

are caused by the inherent difficulty of interpreting short-read

alignments to a complex and repetitive reference. These issues

would largely disappear if we were able to affordably and accu-

rately sequence human genomes with long-read technologies,

enabling de novo haplotype-resolved genome assembly without

reliance on prior reference data. It is still unclear when this day

will come. However, there have been notable advances in the

past year driven by PacBio and ONT platforms, with further

improvements expected in the near future. ONT recently made

significant advances in pushing read-lengths out to unprece-

dented length, making high-quality assemblies possible (when

combined with Illumina data) (Jain et al., 2018). PacBio has

developed a new circular consensus sequencing approach

that promises highly accurate 10–15 kb synthetic reads. Both

platforms have recently achieved and are forecasting steep

cost decreases. However, both still have major challenges that

need to be overcome, first and foremost the extremely high error

rate (> 10%) of raw data and resulting high cost to achieve

accurate genome-wide variant detection. At present, long reads

must be complemented with lllumina short-read data, primarily

because the small indel error rate is still too high. In contrast,

long-read variation maps excel for SV (Audano et al., 2019;

Chaisson et al., 2018; Jain et al., 2018; Sedlazeck et al., 2018).

In the interim, the long-molecule linked-read technology from

10XGenomics offers an affordable alternative; however, thus far,

the performance improvements for reference-based variant

detection are rather modest (Marks et al., 2018) and are limited

to specific regions and variant types (i.e., complex rearrange-

ments) (Spies et al., 2017). Approaches for variant detection
Cell 177, March 21, 2019 75



Figure 3. Allele Frequency of SNVs from the

gnomAD Database
The gnomAD database can be found at https://
gnomad.broadinstitute.org.
(A) Density plot showing theminor allele frequency
(MAF) distribution, known as the ‘‘site frequency
spectrum.’’
(B) Cumulative distribution function of the site
frequency spectrum, showing the fraction of vari-
ants (y axis) with a frequency smaller than a given
MAF (x axis). Note that the leftmost data point
represents ‘‘singleton’’ variants present in only one
person. These plots are based on a randomly
sampled subset of �19 million SNVs from
gnomAD version 2.0, which in total includes
�188 million SNVs from 15,496 genomes.
via de novo haplotype-resolved assembly of linked-reads show

promise (Weisenfeld et al., 2017) but will require further work to

match the performance of reference-based approaches. One

area where linked reads may prove useful in the short term is

haplotype phasing, which is a key aspect of genome analysis.

Statistical population-based phasing methods are inaccurate

for rare and ultra-rare variants, which can be phased only

when sequencing reads link these variants to other nearby vari-

ants. This is much more effective with synthetic or true long

reads (Figure 2). Fully resolved haplotypes are crucial for under-

standing compound effects of multiple variants affecting the

same gene, and for diagnosing compound heterozygotes for

gene disrupting variants.

Sooner or later, long-read technologies will improve substan-

tially. With significant improvements to the error rate, it will be

possible to identify the overwhelmingmajority of genetic variants

via long-read alignment to a pan-genome graph. With significant

improvements to error rate and read length, it should be possible

to routinely create clinical-grade diploid genome assemblies.

The Spectrum of Genetic Variation in Human
Populations
Variant allele frequency is a key factor to consider in the analysis

of genome variation. As a consequence of human population his-

tory, which includes ancient bottlenecks and recent expansion,

the vast majority of variants in the human population are rare

(Figure 3). Traditionally, ‘‘rare’’ variants are defined as those

with minor allele frequency (MAF) < 1%, ‘‘common’’ variants

have MAF > 5%, and ‘‘low-frequency’’ variants are those in be-

tween. The definition of ‘‘ultra-rare’’ varies and is often used to

denote ‘‘singleton’’ variants identified in only one person from

a large study; here, we define ultra-rare variants as MAF

<0.01% (<1 in 10,000 chromosomes).

Although most variants in the population are ultra-rare, most

variants identified in an individual are common (>95%). This is

explained by the fact that most inter-individual variation is due

to ancient polymorphisms that arose early during human history

when the effective population size was small and that are now

present in all major ancestry groups (albeit often at different

frequencies). However, 50–100 new mutations occur each gen-

eration, and during the course of many recent generations of

population growth, a very large number of ultra-rare variants
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have accumulated in the population. Each individual sequenced

in a large study contributes more such variants. In general, rarer

variants aremore difficult to analyze because there are fewer ob-

servations to rely upon during population-level variant detection

and trait association.

The vast majority of genetic variants are non-functional and

neutral and have no discernible phenotypic effects at the individ-

ual level. Most variants with strong phenotypic effects are dele-

terious, and most deleterious variants are rare due to the effects

of purifying selection (Karczewski et al., 2019). Indeed, the allele

frequency of a genetic variant—reflecting the allele’s age and se-

lective forces acting on it—is probably the single most powerful

proxy for its potential phenotypic effects. For example, studies of

Mendelian or early-onset diseases with strong effects on repro-

ductive fitness typically use allele frequency as the primary

variant prioritization criterion and focus solely on rare and de

novo variants. Early groundbreaking resources for allele fre-

quency estimation were based on low-coverage WGS (Auton

et al., 2015) or exome data (Lek et al., 2016). At present, the

most accurate estimates come from the gnomAD (Karczewski

et al., 2019) and Bravo (from NHLBI TOPMed) (https://bravo.

sph.umich.edu/freeze5/hg38) databases, which together are

based on deepWGS data from�75,000 individuals. These data-

bases are invaluable but have limitations related to the diversity

of ancestry groups and variant classes that they represent.

Neither contains structural variants or repetitive variants, and

larger indels are poorly represented. A recent effort from the

NHGRI CCDG program created an SV map from >17,000 ge-

nomes that will help in this regard (Abel et al., 2018). We expect

that future efforts from these and other projects will improve rep-

resentation of all variant classes, across a more diverse set of

ancestry groups, in ever-larger WGS datasets.

Functional Interpretation in Genetic Study Designs
Interpretation of molecular effects of genetic variants is an

essential part of genetic analysis because the discovery of dis-

ease genes often requires prioritization of variants that are pre-

dicted to have a strong impact on gene function (Figure 1). In

Mendelian disease studies as well as in genetic diagnosis,

variant impact prediction and prioritization is used to define the

most likely one or two disease-causing mutation(s) from a

much larger set of candidates. This is necessary in both research

https://bravo.sph.umich.edu/freeze5/hg38
https://bravo.sph.umich.edu/freeze5/hg38
https://gnomad.broadinstitute.org
https://gnomad.broadinstitute.org


Figure 4. Functional Annotation and Downstream Consequences of SNVs and Small Indels
Annotation of genetic variants according to their type, position, and downstream effects for SNVs and indels. The annotations include the most commonly used
ones, and the potential effects on protein are shown here in an approximate sense, asking the question ‘‘if a variant with a given annotation has any effect on gene
function, what are the most likely processes.’’ The downstream effect indicates the change on protein’s function in the cell. This illustration highlights the
complexity challenge of understanding even the proximal molecular effects of diverse types of genetic variants and building biologically andmedicallymeaningful
understanding of their downstream effects.
and diagnostic settings. In rare variant association studies of

common disease or other complex traits, variant allele fre-

quencies and impact predictions are used to prioritize or

‘‘weight’’ variants in the association tests and to group them

by gene or another genomic unit that are then tested for pheno-

type association. This approach has been crucial for studying

common diseases that are heavily influenced by rare and de

novo variation, such as autism and schizophrenia. In contrast,

the discovery of common variant associations to complex dis-

eases by genome-wide association studies is typically per-

formed without functional priors on genetic variants, although

transcriptome-wide association studies rely on genetic predic-

tors on gene expression (Gamazon et al., 2015; Gusev et al.,

2016). However, even in classical GWAS, understanding the

molecular effects of associated variants is an essential next

step to understand cellular processes that underlie disease risk.

The small subset of variants that are functional exert their influ-

ence on organismal phenotype in two general ways: (1) by

inducing qualitative changes in the composition of gene

products by altering the sequence of proteins or noncoding

RNAs or (2) by inducing quantitative changes in protein or RNA
abundance (Figures 4 and 5). These proximal molecular changes

may then exert downstream effects on cellular or physiological

pathways that ultimately contribute to organismal phenotypes.

Exhaustive exploration of these mechanisms or downstream

pathway-level effects is beyond the scope of this Review.

Here, we focus on practical interpretation of variants associated

with human disease with large-scale functional genomic data

that are used to (1) predict functional effects of variants based

on a reference functional annotation of the genome and (2) asso-

ciate genetic variation with empirical molecular measurements in

a population sample of individuals (Figure 6).

Functional Annotation and Prediction of Genetic Variant
Effects
Qualitative and Quantitative Effects

The most straightforward annotation of genetic variants

(Figure 6A) is done based on their allele frequency and their po-

sition either in the coding or noncoding part of the genome.

These have traditionally been analyzed by distinct research

communities. The rare and Mendelian disease community has

generally focused on rare, strong-effect gene-disrupting coding
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Figure 5. Functional Annotation and Downstream Consequences of Structural Variants
Annotation of genetic variants according to their type, position, and downstream effects for structural variants.
variants discovered by exome sequencing. In contrast, the com-

mon disease community has generally focused on common var-

iants genotyped by SNP arrays and analysis of noncoding vari-

ants with likely regulatory effects driving GWAS associations.

However, this dichotomy of variant annotation and genetic

research is currently being challenged frommultiple fronts. First,

the transition to WGS as a universal technology will detect vari-

ants regardless of location and frequency, making the coding-

noncoding and rare-common distinctions unnecessary from a

technical perspective. Furthermore, several studies have

demonstrated a more complex, mixed genetic architecture of

both common and rare disease even though optimal study de-

signs for traits of different genetic architectures remain a matter

of debate (Castel et al., 2018; Freund et al., 2018; Niemi et al.,

2018; Weiner et al., 2017). Finally, a more refined understanding

of functional effects of genetic variants challenges the simple

coding-noncoding classification that often carries implicit as-

sumptions that coding variants cause gene knockouts or disrupt

protein structure, whereas noncoding variants fine-tune tran-

scription levels. In reality, both coding and noncoding variants

can have qualitative and quantitative effects of varying magni-

tudes on both protein structure and dosage (Figures 4 and 5).

Aiming to annotate variants by their predicted functional effects,

rather than genomic position, will ultimately have better biolog-

ical justification and downstream applicability. For example,
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noncoding variants with strong effects on gene expression

should have similar loss-of-function consequences as coding

variants triggering nonsense-mediated decay of the same gene.

Predicting Variant Effects

The aim to assess variants’ qualitative and quantitative effects

depends upon accurate prediction of molecular effects of

diverse types of genetic variants, which is currently one of the

most actively pursued challenges in human genomics research.

For coding variants, the genetic code and the high-quality hu-

man gene annotation provide a relatively straightforward means

to accurately predict amino acid changes and premature stop

codons that lead to either truncated protein or transcript degra-

dation via nonsense-mediated decay. However, predicting

whether an amino acid change actually changes protein struc-

ture and function is extremely difficult. Diverse computational

prediction models use both protein structure and conservation

data (Glusman et al., 2017), but sparsity of experimental valida-

tion data remains a challenge (Raraigh et al., 2018). Splicing

changes may dramatically alter protein structure or introduce a

premature stop codon. Variants in the 2-basepair canonical

splice sites lead to disrupted splicing. Putative splicing changes

can be caused by variants in the surrounding splicing motif,

novel splice sites introduced by exonic or intronic variants,

and variants in splicing enhancer and repressor sequences (Bar-

ash et al., 2010; Rivas et al., 2015; Savisaar and Hurst, 2018;



Figure 6. Illustration of the Approaches

to Interpret Molecular Effects of Genetic

Variants
(A) Straightforward overlap with tissue-specific
annotations of genes and regulatory elements as
well as genome constraint scores.
(B) Predictive machine learning models of variant
function.
(C) Mapping of common variant associations
to molecular phenotypes (left side) and their
colocalization with GWAS associations.
(D) Interrogating if a rare variant carrier is also an
outlier with respect to a proximal molecular
phenotype.
Vaz-Drago et al., 2017). Several algorithms have been developed

to predict variant effects on splicing, but their performance is far

from perfect, especially further away from the canonical splice

site (for example, Xiong et al., 2015; Yeo and Burge, 2004).

However, a recent machine learning approach has promising

performance for even more distant variants that alter splicing

(Jaganathan et al., 2019).

Gene dosage can be affected in even more diverse ways than

protein structure, with complex transcriptional and posttran-

scriptional regulation. For SNVs and small indels, a challenge

is that assays for measuring sequence-specific regulators—

such as transcription or splicing factors and RNA targeting or

secondary structure—are not particularly scalable and robust,

and binding motif predictions are not very accurate. Thus,

many regulatory elements of the genome are annotated by

measuring chromatin accessibility and histone modifications

that reflect chromatin state. These assays have been applied

at scale in multiple cell types by many major projects such as

ENCODE and Epigenomics Roadmap (ENCODE Project Con-

sortium, 2012; Kundaje et al., 2015). Enrichment of disease-

associated variants in genes and noncoding annotations with

differential activity across cell types has provided valuable

insights into the cell types and states most relevant to disease

(Farh et al., 2015; Finucane et al., 2015; Trynka et al., 2013). How-

ever, inference of genetic variant effects on regulatory element

function and gene expression remains a major challenge. While

this is a highly active area of research and many recent reports
utilizing machine learning approaches

report promising results (Figure 6B) (Ali-

panahi et al., 2015; Lee et al., 2015;

Zhou et al., 2018), strong performance

in practical applications is still lacking.

Our inability to accurately read the ge-

nome’s regulatory code is a persistent

challenge for WGS studies.

Efforts to predict variant effects on mo-

lecular function are often complemented

with different measures of evolutionary

conservation or selective constraint in

the human population. These are very

powerful proxies for overall fitness effects

of genetic changes, providing data as

to whether the potential molecular

change actually affects organismal func-
tion. These metrics are essential components of composite

methods such as CADD and fitCons (Gulko et al., 2015; Kircher

et al., 2014) (among others) that integrate annotation and

constraint data to prioritize variants. Furthermore, estimates of

constraint at the level of genes or their parts (Petrovski et al.,

2015; Samocha et al., 2014) have been essential for prioritizing

genes that are particularly sensitive to functional genetic pertur-

bations for rare variant association studies.

There are few tools designed to predict the effects of structural

variants, and those that exist use fairly rudimentary strategies

(Ganel et al., 2017; McLaren et al., 2016). Although interpretation

of whole-gene deletions and duplications is straightforward, pre-

dicting the effects of balanced rearrangements and smaller

exonic deletions and duplications is not. As yet, there is not a

rigorous statistical framework for predicting the impact of non-

coding SVs, although simple approaches that summarize per-

base impact scores (e.g., from CADD) at SV breakpoints and

within affected genomic segments have proven effective (Ganel

et al., 2017).

Molecular Phenotypes to Characterize Functional
Effects of Variants
Given that our ability to predict molecular effects of genetic var-

iants is imperfect, especially for regulatory variants, the natural

complementary approach is to empirically measure molecular

effects of genetic variants in individuals that carry them. This

has been made possible by scalable and affordable assays to
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measure gene expression, splicing, chromatin state, and other

molecular traits genome wide in hundreds to thousands of sam-

ples. Integrated with WGS data, these measurements enable

direct inference into how genetic variants affect gene regulation.

Common variants and eQTL mapping

Of genetic risk loci discovered by GWAS, up to 90% are in non-

coding regions, raising the challenge of functional interpretation

of their proximal regulatory mechanisms, target genes, and rele-

vant cell types of activity (Visscher et al., 2017). This challenge

was a major motivator for expression quantitative trait loci

(eQTL) studies, which are genetic association analyses where

the phenotype is expression level of a gene (Figure 6C). This

has been pursued by consortium projects such as GTEx (GTEx

Consortium et al., 2017), and common cis-regulatory genetic as-

sociations have nowbeen discovered for nearly every gene in the

human genome (GTExConsortium et al., 2017; Võsa et al., 2018).

These studies have also provided insights into the functional

importance of SVs and STRs (Chiang et al., 2017; Gymrek

et al., 2016). Trans-eQTLs between distant genes and variants

have been substantially more challenging to find, but they pro-

vide particularly valuable insights into variant and gene effects

on regulatory networks (GTEx Consortium et al., 2017; Võsa

et al., 2018). Transcriptome-wide association studies have

provided a new approach to use genetically predicted gene

expression or splicing changes from large eQTL datasets to

find new associations to traits and diseases (Gamazon et al.,

2015; Gusev et al., 2016). These general approaches can also

be applied to other molecular traits such as splicing, epigenomic

features, and protein levels (Li et al., 2016; Sun et al., 2018; Was-

zak et al., 2015).

The enrichment of molecular QTL associations among GWAS

loci indicates their ability to inform on regulatory mechanisms of

complex traits (Gamazon et al., 2018; Nicolae et al., 2010; Ongen

et al., 2017). However, similar to other association studies, QTL

analysis does not provide direct distinction of the causal variant

versus variants in linkage disequilibrium with the causal variant.

This complicates the interpretation and applications of eQTLs.

When integrated with GWAS data, spurious overlap must be

excluded by statistical colocalization analysis to estimate

whether the causal variant of GWAS and eQTL signals is shared

(Giambartolomei et al., 2014; Hormozdiari et al., 2016;Wen et al.,

2017), providing a stronger hypothesis that the gene expression

change indicated by the eQTL is causally related to the GWAS

trait. The complexity of LD patterns and the wealth of eQTL ef-

fects on different genes in different tissues and cell types may

make it difficult to identify specific functional hypotheses from

eQTL data (Chun et al., 2017). However, molecular QTL data

have provided likely causal mechanisms for thousands of

GWAS loci by implicating specific epigenomic features, proximal

gene expression or splicing, and/or downstream network effects

(Gamazon et al., 2018; GTEx Consortium et al., 2017; Hormoz-

diari et al., 2018; Ongen et al., 2017; Võsa et al., 2018). Impor-

tantly, eQTL evidence indicates that the relevant disease gene

is usually not the nearest gene to the genetic locus (GTEx Con-

sortium et al., 2017), highlighting the importance of eQTL and

other functional follow-up to interpret GWAS loci and to provide

valuable information about regulatory effects of common genetic

variants.
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Rare Variant Analysis via Molecular Trait Outliers

While the eQTL approach is powerful for characterizing common

regulatory variants or loci, association approaches cannot be

used for very rare variants. InWGS studies of rare variant effects,

as discussed above, variants need to be prioritized and grouped

according to their predicted functional impact, but these predic-

tions are often inaccurate especially for variants affecting tran-

scriptional regulation or splicing. A complementary approach is

to see if rare variant appears to have a molecular effect that is

unusual compared to the general population (Li et al., 2017)

(Figure 6D). Indeed, it has been shown that diagnostic rate

in Mendelian disease can be improved by transcriptome

sequencing that facilitates detection of ultra-rare variants with

expression or splicing effects that are difficult to predict from

WGS data alone (Cummings et al., 2017; Fresard et al., 2018;

Kremer et al., 2017). Further approaches for WGS and RNA-

seq integration in rare variant interpretation are under develop-

ment. Molecular phenotype data can therefore be an important

complement to WGS in interpretation and prioritization of rare

genetic variants.

Future Challenges in Variant Interpretation
One of the fundamental challenges in both functional prediction

of genetic variants and population-scale molecular analyses is

the tissue, cell type, and cell-state specificity of molecular func-

tion of the genome. Functional annotation does not cover all

these contexts—including developmental stage and environ-

mental conditions—and thus has incomplete information of cell

type and state specific transcripts and transcriptional and

postranscriptional regulatory elements. The current eQTL cata-

logs are vast but mostly based on bulk tissue data often from

whole blood. Emerging analyses of specific cell types and cell

states—for example, in the form of stimulated immune cells—

has highlighted the importance of extending these analyses to

understand context-specific effects of genetic variants and their

contribution to disease (Fairfax et al., 2014; Zhernakova et al.,

2017). This is also relevant for understanding how applicable

the information obtained from in vitro cell line assays is for

modeling genetic effects in the complex in vivo cellular environ-

ment of the human body. With the development of single-cell

technology, we anticipate significant progress in understanding

context-specific genetic effects during the next few years.

Additionally, the current toolkit of genomic assays that are

robust and scalable do not cover all aspects of genome function.

In particular, the difficulty of measuring transcription and splicing

factor binding and thus improving their motif predictions contrib-

utes to our inability to read the genome’s regulatory code and to

accurately predict genetic variant effects. One technology that

will aid in solving this problem is large-scale experimental testing

of genetic effects on gene expression and splicing (Soemedi

et al., 2017; Tewhey et al., 2016; van Arensbergen et al., 2018),

which will also create essential testing and training data for ma-

chine-learning approaches.

Finally, most eQTL studies are still limited to relatively small

sample sizes appropriate mainly for cis-eQTL mapping, with

scant coverage of many ancestry groups. It may be informative

to consider lessons learned from the GWAS field, where—after

modest success with smaller sample sizes—meaningful insights



and applications emerged after a major scale-up in power.

Extending the sample size and diversity in eQTL studies has

the potential to uncover trans-eQTLs with insights to causal

network effects and gene function, improve fine-mapping of

causal regulatory variants, and provide important insights into

the effects of rare variants uncovered by WGS studies. We envi-

sion that complementing large-scale studies of human genomes

and phenomes with molecular traits will add an important layer

for interpretation of the genome and its links to human traits.

Conclusions
This is an exciting time in the field of human genetics and geno-

mics. In recent years, we have witnessed historic advances in

genome sequencing and analysis technologies, which are

enabling the creation of ever larger and richer datasets, and

the pursuit of ever more creative analyses. At present, the key

challenges that need to be overcome for WGS studies to realize

their full potential are comprehensive variant discovery and ac-

curate prediction of functional effects of variants.

A solid framework and roadmap appears to be in place tomeet

the first challenge. We expect that further development of long-

molecule sequencing technologies, high-quality haplotype cata-

logs, and pan-genome analysis methods will in combination

enable reasonably comprehensive variant detection at the vast

majority of functional genomic loci. However, making these

approaches scalable and affordable enough for the massive

sample sizes needed in human genetic studies will take consid-

erable effort in years to come.

The challenges in the prediction of variant effects are more

complex, and the roadmap and timeline are less clear. However,

there is broad agreement that many different approaches will be

required and that they need to be applied to diverse systems

ranging from cellular, organoid, and animal models to human

samples. Analysis of increasingly large and diverse cell types

and human populations is essential. We envision that improve-

ments in experimental methods, creation of large and compre-

hensive datasets, and algorithm development will go hand in

hand to enable direct interrogation of variant effects and

increasingly accurate computational prediction methods. These

approaches will be complemented by information gained from

large-scale WGS projects that provide not only catalogs of

variants but also high-resolution maps of selective constraint in

coding and non-coding regions and deeper genetic association

data for rare and common disease.

In combination, knowledge of genome variation and its func-

tional effects is an essential foundation for understanding human

biology and improving human health. To ultimately achieve these

goals, genomics will need to be integrated with population-scale

phenotyping and clinical implementation.
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Gamazon, E.R., Segrè, A.V., van de Bunt, M., Wen, X., Xi, H.S., Hormozdiari,

F., Ongen, H., Konkashbaev, A., Derks, E.M., Aguet, F., et al.; GTEx Con-

sortium (2018). Using an atlas of gene regulation across 44 human tissues to

inform complex disease- and trait-associated variation. Nat. Genet. 50,

956–967.

Ganel, L., Abel, H.J., and Hall, I.M.; FinMetSeq Consortium (2017). SVScore:

an impact prediction tool for structural variation. Bioinformatics 33,

1083–1085.

Garrison, E., and Marth, G. (2012). Haplotype-based variant detection from

short-read sequencing. arXiv, arXiv:1203.3907v2, https://arxiv.org/abs/

12073907.

Garrison, E., Sirén, J., Novak, A.M., Hickey, G., Eizenga, J.M., Dawson, E.T.,

Jones, W., Garg, S., Markello, C., Lin, M.F., et al. (2018). Variation graph toolkit

improves readmapping by representing genetic variation in the reference. Nat.

Biotechnol. 36, 875–879.

Giambartolomei, C., Vukcevic, D., Schadt, E.E., Franke, L., Hingorani, A.D.,

Wallace, C., and Plagnol, V. (2014). Bayesian test for colocalisation between

pairs of genetic association studies using summary statistics. PLoS Genet.

10, e1004383.

Glusman, G., Rose, P.W., Prli�c, A., Dougherty, J., Duarte, J.M., Hoffman, A.S.,

Barton, G.J., Bendixen, E., Bergquist, T., Bock, C., et al. (2017). Mapping ge-

netic variations to three-dimensional protein structures to enhance variant

interpretation: a proposed framework. Genome Med. 9, 113.
82 Cell 177, March 21, 2019
Gulko, B., Hubisz, M.J., Gronau, I., and Siepel, A. (2015). A method for calcu-

lating probabilities of fitness consequences for point mutations across the hu-

man genome. Nat. Genet. 47, 276–283.

Gusev, A., Ko, A., Shi, H., Bhatia, G., Chung, W., Penninx, B.W., Jansen, R., de

Geus, E.J., Boomsma, D.I., Wright, F.A., et al. (2016). Integrative approaches

for large-scale transcriptome-wide association studies. Nat. Genet. 48,

245–252.

Gymrek, M., Golan, D., Rosset, S., and Erlich, Y. (2012). lobSTR: A short

tandem repeat profiler for personal genomes. Genome Res. 22, 1154–1162.

Gymrek, M., Willems, T., Guilmatre, A., Zeng, H., Markus, B., Georgiev, S.,

Daly, M.J., Price, A.L., Pritchard, J.K., Sharp, A.J., and Erlich, Y. (2016).

Abundant contribution of short tandem repeats to gene expression variation

in humans. Nat. Genet. 48, 22–29.

Handsaker, R.E., Korn, J.M., Nemesh, J., and McCarroll, S.A. (2011). Discov-

ery and genotyping of genome structural polymorphism by sequencing on a

population scale. Nat. Genet. 43, 269–276.

Handsaker, R.E., Van Doren, V., Berman, J.R., Genovese, G., Kashin, S.,

Boettger, L.M., andMcCarroll, S.A. (2015). Large multiallelic copy number var-

iations in humans. Nat. Genet. 47, 296–303.
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C., Aird, D., Stevens, C., Robinson, J.T., et al. (2013). Mutations causing med-

ullary cystic kidney disease type 1 lie in a large VNTR in MUC1 missed by

massively parallel sequencing. Nat. Genet. 45, 299–303.

Kircher, M., Witten, D.M., Jain, P., O’Roak, B.J., Cooper, G.M., and Shendure,

J. (2014). A general framework for estimating the relative pathogenicity of hu-

man genetic variants. Nat. Genet. 46, 310–315.

Kremer, L.S., Bader, D.M., Mertes, C., Kopajtich, R., Pichler, G., Iuso, A.,

Haack, T.B., Graf, E., Schwarzmayr, T., Terrile, C., et al. (2017). Genetic diag-

nosis of Mendelian disorders via RNA sequencing. Nat. Commun. 8, 15824.

Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi,

A., Kheradpour, P., Zhang, Z., Wang, J., Ziller, M.J., et al.; Roadmap

Epigenomics Consortium (2015). Integrative analysis of 111 reference human

epigenomes. Nature 518, 317–330.

https://doi.org/10.1101/159228
https://doi.org/10.1101/159228
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref18
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref18
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref18
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref18
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref19
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref19
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref19
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref20
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref20
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref20
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref20
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref20
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref21
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref21
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref21
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref21
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref22
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref22
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref22
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref22
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref23
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref23
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref23
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref23
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref23
https://doi.org/10.1101/408492
https://doi.org/10.1101/408492
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref25
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref25
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref25
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref25
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref26
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref26
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref26
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref26
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref27
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref27
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref27
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref27
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref27
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref28
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref28
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref28
https://arxiv.org/abs/12073907
https://arxiv.org/abs/12073907
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref30
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref30
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref30
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref30
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref31
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref31
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref31
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref31
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref32
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref32
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref32
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref32
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref32
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref33
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref33
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref33
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref34
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref34
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref34
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref34
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref35
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref35
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref36
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref36
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref36
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref36
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref37
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref37
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref37
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref38
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref38
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref38
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref39
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref39
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref39
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref39
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref40
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref40
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref40
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref40
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref41
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref41
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref41
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref42
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref42
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref42
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref42
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref43
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref43
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref43
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref43
https://doi.org/10.1101/531210
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref45
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref45
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref46
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref46
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref46
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref46
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref47
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref47
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref47
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref47
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref47
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref48
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref48
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref48
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref49
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref49
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref49
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref50
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref50
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref50
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref50


Layer, R.M., Chiang, C., Quinlan, A.R., and Hall, I.M. (2014). LUMPY: a prob-

abilistic framework for structural variant discovery. Genome Biol. 15, R84.

Lee, D., Gorkin, D.U., Baker, M., Strober, B.J., Asoni, A.L., McCallion, A.S.,

and Beer, M.A. (2015). A method to predict the impact of regulatory variants

from DNA sequence. Nat. Genet. 47, 955–961.

Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks, E., Fennell, T.,

O’Donnell-Luria, A.H., Ware, J.S., Hill, A.J., Cummings, B.B., et al.; Exome

Aggregation Consortium (2016). Analysis of protein-coding genetic variation

in 60,706 humans. Nature 536, 285–291.

Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs

with BWA-MEM. arXiv, arXiv: 1303.3997v2, https://arxiv.org/abs/1303.3997.

Li, Y.I., van de Geijn, B., Raj, A., Knowles, D.A., Petti, A.A., Golan, D., Gilad, Y.,

and Pritchard, J.K. (2016). RNA splicing is a primary link between genetic vari-

ation and disease. Science 352, 600–604.

Li, X., Kim, Y., Tsang, E.K., Davis, J.R., Damani, F.N., Chiang, C., Hess, G.T.,

Zappala, Z., Strober, B.J., Scott, A.J., et al.; GTEx Consortium; Laboratory,

Data Analysis &Coordinating Center (LDACC)—Analysis Working Group; Sta-

tistical Methods groups—Analysis Working Group; Enhancing GTEx (eGTEx)

groups; NIH Common Fund; NIH/NCI; NIH/NHGRI; NIH/NIMH; NIH/NIDA;

Biospecimen Collection Source Site—NDRI; Biospecimen Collection Source

Site—RPCI; Biospecimen Core Resource—VARI; Brain Bank Repository—

University of Miami Brain Endowment Bank; Leidos Biomedical—Project

Management; ELSI Study; Genome Browser Data Integration &Visualiza-

tion—EBI; Genome Browser Data Integration &Visualization—UCSC Geno-

mics Institute, University of California Santa Cruz (2017). The impact of rare

variation on gene expression across tissues. Nature 550, 239–243.

Marks, P., Garcia, S., Martinez Barrio, A., Belhocine, K., Bernate, J., Bharad-

waj, R., Bjornson, K., Catalanotti, C., Delaney, J., Fehr, A., et al. (2018).

Resolving the Full Spectrum of Human Genome Variation using Linked-Reads.

bioRxiv. https://doi.org/10.1101/230946.

McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R., Thormann, A., Flicek,

P., and Cunningham, F. (2016). The Ensembl Variant Effect Predictor. Genome

Biol. 17, 122.

Mills, R.E., Walter, K., Stewart, C., Handsaker, R.E., Chen, K., Alkan, C., Aby-

zov, A., Yoon, S.C., Ye, K., Cheetham, R.K., et al.; 1000 Genomes Project

(2011). Mapping copy number variation by population-scale genome

sequencing. Nature 470, 59–65.

Mirkin, S.M. (2007). Expandable DNA repeats and human disease. Nature 447,

932–940.

Mousavi, N., Shleizer-Burko, S., and Gymrek, M. (2018). Profiling the genome-

wide landscape of tandem repeat expansions. bioRxiv. https://doi.org/10.

1101/361162.

Nicolae, D.L., Gamazon, E., Zhang, W., Duan, S., Dolan, M.E., and Cox, N.J.

(2010). Trait-associated SNPs are more likely to be eQTLs: annotation to

enhance discovery from GWAS. PLoS Genet. 6, e1000888.

Niemi, M.E.K., Martin, H.C., Rice, D.L., Gallone, G., Gordon, S., Kelemen, M.,

McAloney, K., McRae, J., Radford, E.J., Yu, S., et al. (2018). Common genetic

variants contribute to risk of rare severe neurodevelopmental disorders. Na-

ture 562, 268–271.

Numanagi�c, I., Maliki�c, S., Pratt, V.M., Skaar, T.C., Flockhart, D.A., and Sahi-

nalp, S.C. (2015). Cypiripi: exact genotyping of CYP2D6 using high-throughput

sequencing data. Bioinformatics 31, i27–i34.

Ongen, H., Brown, A.A., Delaneau, O., Panousis, N.I., Nica, A.C., and Dermit-

zakis, E.T.; GTEx Consortium (2017). Estimating the causal tissues for complex

traits and diseases. Nat. Genet. 49, 1676–1683.

Pasaniuc, B., Rohland, N., McLaren, P.J., Garimella, K., Zaitlen, N., Li, H.,

Gupta, N., Neale, B.M., Daly, M.J., Sklar, P., et al. (2012). Extremely low-

coverage sequencing and imputation increases power for genome-wide asso-

ciation studies. Nat. Genet. 44, 631–635.

Paten, B., Novak, A.M., Eizenga, J.M., and Garrison, E. (2017). Genome

graphs and the evolution of genome inference. Genome Res. 27, 665–676.

Petrovski, S., Gussow, A.B., Wang, Q., Halvorsen, M., Han, Y., Weir, W.H., Al-

len, A.S., and Goldstein, D.B. (2015). The Intolerance of Regulatory Sequence
to Genetic Variation Predicts Gene Dosage Sensitivity. PLoS Genet. 11,

e1005492.

Pugliese, A., Zeller, M., Fernandez, A., Jr., Zalcberg, L.J., Bartlett, R.J., Ric-

ordi, C., Pietropaolo, M., Eisenbarth, G.S., Bennett, S.T., and Patel, D.D.

(1997). The insulin gene is transcribed in the human thymus and transcription

levels correlated with allelic variation at the INS VNTR-IDDM2 susceptibility lo-

cus for type 1 diabetes. Nat. Genet. 15, 293–297.

Quinlan, A.R., and Hall, I.M. (2012). Characterizing complex structural variation

in germline and somatic genomes. Trends Genet. 28, 43–53.

Raraigh, K.S., Han, S.T., Davis, E., Evans, T.A., Pellicore, M.J., McCague, A.F.,

Joynt, A.T., Lu, Z., Atalar, M., Sharma, N., et al. (2018). Functional Assays Are

Essential for Interpretation of Missense Variants Associated with Variable Ex-

pressivity. Am. J. Hum. Genet. 102, 1062–1077.

Rausch, T., Zichner, T., Schlattl, A., Stütz, A.M., Benes, V., and Korbel, J.O.
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Võsa, U., Claringbould, A., Westra, H., Jan Bonder, M.J., Deelen, P., Zeng, B.,

Kirsten, H., Saha, A., Kreuzhuber, R., Kasela, S., et al. (2018). Unraveling the

polygenic architecture of complex traits using blood eQTL meta-analysis. bio-

Rxiv. https://doi.org/10.1101/447367.

Waszak, S.M., Delaneau, O., Gschwind, A.R., Kilpinen, H., Raghav, S.K., Wit-

wicki, R.M., Orioli, A., Wiederkehr, M., Panousis, N.I., Yurovsky, A., et al.

(2015). Population Variation and Genetic Control of Modular Chromatin Archi-

tecture in Humans. Cell 162, 1039–1050.

Weiner, D.J., Wigdor, E.M., Ripke, S., Walters, R.K., Kosmicki, J.A., Grove, J.,

Samocha, K.E., Goldstein, J.I., Okbay, A., Bybjerg-Grauholm, J., et al.;

iPSYCH-Broad Autism Group; Psychiatric Genomics Consortium Autism

Group (2017). Polygenic transmission disequilibrium confirms that common

and rare variation act additively to create risk for autism spectrum disorders.

Nat. Genet. 49, 978–985.
84 Cell 177, March 21, 2019
Weisenfeld, N.I., Kumar, V., Shah, P., Church, D.M., and Jaffe, D.B. (2017).

Direct determination of diploid genome sequences. Genome Res. 27,

757–767.

Wen, X., Pique-Regi, R., and Luca, F. (2017). Integrating molecular QTL data

into genome-wide genetic association analysis: Probabilistic assessment of

enrichment and colocalization. PLoS Genet. 13, e1006646.

Willems, T., Gymrek, M., Highnam, G., Mittelman, D., and Erlich, Y.; 1000

Genomes Project Consortium (2014). The landscape of human STR variation.

Genome Res. 24, 1894–1904.

Xiong, H.Y., Alipanahi, B., Lee, L.J., Bretschneider, H., Merico, D., Yuen, R.K.,

Hua, Y., Gueroussov, S., Najafabadi, H.S., Hughes, T.R., et al. (2015). RNA

splicing. The human splicing code reveals new insights into the genetic deter-

minants of disease. Science 347, 1254806.

Yeo, G., and Burge, C.B. (2004). Maximum entropy modeling of short

sequence motifs with applications to RNA splicing signals. J. Comput. Biol.

11, 377–394.

Zhernakova, D.V., Deelen, P., Vermaat, M., van Iterson, M., van Galen, M.,

Arindrarto, W., van ’t Hof, P., Mei, H., van Dijk, F., Westra, H.J., et al. (2017).

Identification of context-dependent expression quantitative trait loci in whole

blood. Nat. Genet. 49, 139–145.

Zhou, J., Theesfeld, C.L., Yao, K., Chen, K.M., Wong, A.K., and Troyanskaya,

O.G. (2018). Deep learning sequence-based ab initio prediction of variant

effects on expression and disease risk. Nat. Genet. 50, 1171–1179.

Zook, J.M., Chapman, B., Wang, J., Mittelman, D., Hofmann, O., Hide, W., and

Salit, M. (2014). Integrating human sequence data sets provides a resource of

benchmark SNP and indel genotype calls. Nat. Biotechnol. 32, 246–251.

http://refhub.elsevier.com/S0092-8674(19)30215-6/sref86
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref86
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref86
https://doi.org/10.1101/460402
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref88
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref88
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref89
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref89
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref89
https://doi.org/10.1101/447367
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref91
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref91
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref91
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref91
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref92
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref92
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref92
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref92
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref92
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref92
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref93
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref93
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref93
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref94
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref94
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref94
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref95
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref95
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref95
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref96
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref96
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref96
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref96
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref97
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref97
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref97
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref98
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref98
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref98
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref98
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref99
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref99
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref99
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref100
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref100
http://refhub.elsevier.com/S0092-8674(19)30215-6/sref100

	Genomic Analysis in the Age of Human Genome Sequencing
	Introduction
	Human Genome Sequencing
	WGS Technologies
	Alignment and Data Processing

	Genetic Variant Classes
	Single-Nucleotide Variants and Small Insertion/Deletion Variants
	Structural Variation
	Repetitive Variant Classes

	Joint Variant Detection and Genotyping in Population Studies
	Future Improvements in Algorithms and Data for Genome Analysis
	Pan-genome References and Analysis Tools
	Affordable and High-Quality Long-Read WGS

	The Spectrum of Genetic Variation in Human Populations
	Functional Interpretation in Genetic Study Designs
	Functional Annotation and Prediction of Genetic Variant Effects
	Qualitative and Quantitative Effects
	Predicting Variant Effects

	Molecular Phenotypes to Characterize Functional Effects of Variants
	Common variants and eQTL mapping
	Rare Variant Analysis via Molecular Trait Outliers

	Future Challenges in Variant Interpretation
	Conclusions
	Acknowledgments
	Declaration of Interests
	References


