Nucleus-specific X-ray stain for 3-D virtual histology

Histology is used to identify structural details of tissue at the microscale in the pathology lab, but analyses remain two-dimensional (2D) as they are limited to the same plane. Nondestructive 3D technologies including X-ray micro and nano-computed tomography (nanoCT) have proven validity to understand anatomical structures since they allow arbitrary viewing angles and 3D structural detail. However, low attenuation of soft tissue has hampered their application in the field of 3D virtual histology. In a recent study, now published on Scientific Reports, Mark Müller and colleagues at the Department of Physics and Bioengineering have developed a hematein-based X-ray staining method to specifically target cell nuclei, followed by demonstrations on a whole liver lobule of a mouse.
The novel staining protocol combined the recently developed, high-resolution nanoCT system for 3D visualization of the tissue architecture at the nanometer scale. The results revealed the real 3D morphology alongside spatial distribution of cell nuclei. The technique was also compatible with conventional histology, as microscopic slides with soft tissue sample could be stained with the same protocol alongside additional counter-staining. The method demonstrated the possibility for future applications in histopathology accompanied by X-ray CT devices in the lab.

Spotlight

Other News

Dom Nicastro | April 03, 2020

Read More

Dom Nicastro | April 03, 2020

Read More

Dom Nicastro | April 03, 2020

Read More

Dom Nicastro | April 03, 2020

Read More